|
||||||||
|
||||||||
Jeofizik Mühendisliği'nde lisansüstü eğitimin ilk adımı olan yüksek lisans programı 2 yıllık bir eğitimi içermektedir. Bu eğitimi tamamlamak için;
24 krediden, en az üçte biri öğrencinin kaydolduğu program tarafından verilen dersleri içermelidir. Kalan, üçte ikilik kısımda, öğrenci danışmanının onayı ile seçmeli derslerden veya enstitünün kabul ettiği derslerden oluşmalıdır. 24 kredilik ders, 500 ve 600 kodlu derslerden oluşmalıdır. Bununla birlikte, bazı programlar danışman onayı ile maksimum iki tanesi kredili 400 kodlu derslerden oluşabilir. Derslerin en az 3.00 ortalama ile tamamlanmasından sonra, tez döneminde öğrenciden verilen bir araştırma konusunu yürütmesi ve 2 yarıyılda tamamlaması istenir. Enstitü tarafından bu dönem 1 yarıyıl uzatılabilir. Tezin onaylanması için teslim edilmesinden sonra, araştırmanın sözlü olarak savunulması istenir. Lisans eğitimini eşdeğer programlarda tamamlamayan ve bu programa başvuran öğrencilerin, ders dönemleri 3 yarıyıla uzatılabilir ve danışman onayı ile lisansta ilgili oldukları alandan ders alabilirler. Jeofizikte lisansüstü eğitimde son adım olan doktora programı, 4 yıllık bir eğitimi içermektedir. Bu eğitimi tamamlamak için,
Doktora programı, kişinin özel bir alanda profesyonel ilgisi esasına dayalı olduğu için, ders çalışması adayın özel ilgi ve ihtiyaçlarına yönelik olarak danışmanın yol göstermesi ile planlanır. 21 kredilik ders dönemi, 600 kodlu dersleri içermelidir, bununla birlikte danışman onayı ile değişiklikler yapılabilir. Boğaziçi Üniversitesi'nden yüksek lisans derecesi olmayan adaylar, normal derslere ek olarak, en az 2 adet 500 veya 600 kodlu ders almalıdırlar. Ders döneminin ortalama 3.0 derece ile tamamlanmasından sonra, adaylardan yeterlilik sınavını vermeleri istenir. Bu sınavın başarı ile verilmesinin ardından, aday enstitü tarafından belirlenen danışman kontrolünde doktora tezine başlayabilir. Doktora derecesi, genel bir yeterliliğe, iyi bilgi seviyesine ve özel bir çalışma alanında yeteneğine hem de yürütülen tez çalışmasının sonucunun da göstereceği gibi, bağımsız bir araştırmayı yürütebilme kapasitesine sahip olduğunu ispat eden adaylara verilir. Aday doktora derecesini, başarı ile tamamladığı sözlü bir sınavın ardından almaya hak kazanır.
GPH 501 Fundamentals of Theoretical Geophysics *(3+0+0)3(Teorik Jeofiziğin Temelleri)
Vector fields in geophysics. Vector calculus. Multiple integrals. Integral of vector fields over curves and surfaces. Integral theorems: Green’s theorem in the plane. Stoke's theorem. Conservative fields, potentials. Potential and fields for gravity and electrostatics. Fluid flow. Electrical and magnetic fields. Partial differential equations in geophysics. Heat equation. Method of separation of variables. Wave equation: d’Alembert Solution. Wave equation in polar coordinates. GPH 503 Mathematical Methods in Geophysics*(3+0+0)3 (Jeofizikte Matematiksel Yöntemler)
Matrix algebra, inverse matrix, eigenvalues, eigenvectors.
Complex analysis. Integral transform. Application from geophysical theory.
(Jeofizikte Veri Analizi)
Least squares fitting, covariance and correlation functions. Power spectra. Probability. Normal, Binomial and Poisson distributions. Deconvolution, optimum filters, linear filters in earth sciences.
Special filters in geophysics: polarization analysis, f-k filtering.
(Sismolojiye Giriş)
development. Seismic waves: Body waves, surface waves. Travel times and structure of the earth. Seismogram interpretation. Seismographs. Anelasticity and anisotropy. Focal parameters of earthquakes: Earthquakes and faults, location, magnitude, seismic moment, intensity, seismic energy.
Seismicity, seismotectonics, seismic hazard and seismic risk. (Jeofizik Yöntemlere Giriş)
for mining, petroleum exploration and engineering studies. Emphasis on recent advances is seismic, gravity, electrical and magnetic techniques. Laboratory work to solve exploration problems in magnetic,
electrical and seismic methods. (Levha Tektoniği ve Kabuk Dinamiği)
Principal tectonic features of the earth. Oceanic crust and spreading centers. Plate motion; driving forces. Convergent margins; subductions, back-arc basins. Oceanic transform faults. Triple junctions and supercontinents. Collision, development of orogenic belts, formation of mountain roots, ophiolite emplacement, sutures, delamination. Case studies: Himalaya,
Alps, Ural, Ands, Red Sea, Eastern Mediterranean, Anatolia, Aegean.
(Deprem Jeolojisi) earthquakes. Seismotectonics. Geology of earthquake source region.
Active fault morphology, tectonic geodesy, seismic cycle, earthquake
prediction.
(Yerbilimlerinde Bilgisayarlar) to computer simulations of geophysical methods. Development of individual projects, writing appropriate computer codes. Introduction to
efficient use of Matlab as a tool for research in Earth Sciences.
(Yeriçinin Fiziği) Chemical and physical models of the earth. Studying structure of the Earth’s crust by using explosion and earthquake seismology, gravity, magnetic and electromagnetic methods. Case studies from
Turkey and the world.
(Jeofizikte Elektromanyetik Yöntemler) Study of electromagnetic sounding methods. Principles of magnetotellurics (MT), controlled source audio-frequency magnetotellurics (CSAMT), geomagnetic deep sounding (GDS) and very-low-frequency (VLF)
methods. Field applications and interpretation of electromagnetic data.
(Jeofizikte Potansiyel Alanlar) Introduction to the classical field theory of geophysical interest, namely steady state and time dependent electromagnetic fields, currents.
Lagrangian field theory. Gravitational and magnetic fields.
(Jeomanyetizma ve Paleomanyetizma) Historical development of geomagnetism. Global geomagnetic studies, observation techniques, instrumentation and geomagnetic
observatories. Introduction to paleomagnetism.
(Dalga Yayınımı I) Stress and strain, equation of motion, wave equation, One dimensional solution of wave equation, body waves and ray theory,
Snell’s Law, travel times and the structure of the Earth. (Deprem Kaynağı Fiziği I)
forces. Double couple sources. Elastostatic. Elastodynamic. Seismic moment tensor. Radiation pattern. Fault plane solutions. Finite sources. Rupture models. Haskell source. Source directivity. Source spectrum. Fault geometry and corner frequency. Stress drop, rupture velocity.
Magnitude. Energy.
(Gözlemsel Sismoloji) Historical and conceptual background of observational seismology, consequences of recent technical developments, seismicity, seismic sources and source parameters, rules and procedures for magnitude determination and magnitude scales, seismic waves and travel times, seismic signals and noise, seismic data formats, data analysis and seismogram interpretation, seismic analysis codes (SAC, Seatools,
geotools), locating earthquakes.
(Sismik Aletler) Overview, basic theory and history of seismometry. The frequency response function, the transfer function, the impulse response function, the condition for stability, the step response function, pole and zero positions. Seismometry, seismic sensors and their calibration, seismic recording systems. Seismic networks: Site selection, preparation and installation of seismic stations, seismic network purpose, seismic network
configuration, data transmission and data acquisition. Seismic arrays.
(Sismik Yorumlama) Theory of seismic refraction and reflection, data processing, velocity analysis, filtering, migration, synthetic seismograms, two and three-
dimensional interpretation, computer applications and examples.
(Çevresel ve Uygulamalı Jeofizik) and reflection, gravity, magnetism, electromagnetism, resistivity and ground penetrating radar. Hands on field exercises and demos at some selected sites. Familiarization with report writing and application of each method. Site studies related to environmental, engineering and
archaeological problems.
(Lısansüstü Semineri) The widening of students’ perspectives and awareness of topics of interest to geophysicists through seminars offered by faculty, guest
speakers and graduate students.
(Jeofizikte Seçilmiş Konular I-IV) Topics related to the research works in geophysics. Practical aspects of explosion and earthquake seismology. Use of software for
analyzing collected geophysical data and preparing scientific reports.
(Bağımsız Çalışmalar) Independent research projects or directed readings designed to meet the needs and interests of individual students. Regular conferences
given by students and instructors required.
(Lısansüstü Semineri) Investigation in depth of a special topic related with the student’s major area of study and research in geophysics, with the aim of
original contribution to the subject. Preparation and defence of a M.S.
thesis.
(Lisansüstü Tezi) major area of study and research in geophysics, with the aim of original
contribution to the subject. Preparation and defence of a M.S. thesis.
(Doktora Semineri I-II) Material collection and presentation of a particular subject of interest to the student. Improvement of the students’ ability in self-initiated learning, systematizing collected materials for utilization, not only for oral presentation but also for information retrieval and responding
to questions.
(Manyetotellürik Yöntem) Theoretical basis of magnetotelluric (MT) method. Apparent resistivity and phase relationships in MT. Field experiments. Data processing and
modeling of MT data.
(İleri Yermanyetizması) Spherical harmonic analysis. External, crustal and internal geomagnetic fields, representation of the internal field, secular variation, dipole and
non-dipole fields, westward drift. Introduction to dynamo theory.
(Elektromanyetikte Sayısal Yöntemler) Finite element method (FEM) in electromagnetism. Ritz and Galerkin methods. One, two and three dimensional finite element analyses, boundary
value problems.
(Dizilim Sismolojisi) The term “Seismic array”, geometrical parameters, beam forming and detection processing, array transfer function, slowness estimation using
seismic arrays, array design.
(Deprem Kaynağı Fiziği II) Moment tensor representation. Body wave modeling. Surface wave modeling. Rectangular and circular fault models. Rupture dynamics. Friction: Byerlee's Law, Coulomb failure, slip-weakening, rate- and state-dependent friction. Nucleation, propogation and arrest of a rupture. Crack growth model. Spatio-temporal seismicity patterns.
Characterization of fault zone structures, trapped waves.
(Küresel Sismoloji) Global distribution of seismic sources. Large scale structure of the Earth. Crustal and upper mantle propagation. Mantle and core phases. Receiver function. Global tomography. S-wave splitting and upper mantle anisotropy. Free oscillations of the Earth. Surface
waves on spherical earth. Normal modes. Centroid moment tensor.
(Jeofizikte Ters Çözüm Yöntemleri) Inverse of matrices, eigenvalues and eigenvectors, singular value decomposition, linear inverse problems, least squares solution of the linear inverse problems, solving underdetermined and overdetermined problems with constraints, generalized inverses, monte carlo methods, genetic algorithms. GPH 645 Numerical Methods in Seismology (3+0+0)3
(Sismolojide Sayısal Yöntemler) Finite-difference and finite element methods for the solution of wave equation. Numerical solution of Lamp’s problem. Ray tracing techniques. Solution
of integral equations. Propagator matrices. Time-frequency analysis of
seismıc signals.
(Dalga yayınımı II) Equation of motion, elastic wave equation, reflection-transmission coefficients, surface waves, Lamb’s problem, wave propagation in
layered media, numerical solutions of wave equation.
(Küresel Tehlikelerin Belirlenmesinde İstatistiksel Yöntemler) Basic concept of probability and random processes in geophysics. Gaussian distribution. Exponential distribution. Stationarity. Wiener process. Poisson process. Extreme value statistics Gumbel's distribution. Markov sequences. Frequency-magnitude relationship. Time dependent hazard models. Estimation: linear-mean square estimation, Bayes estimation, maximum likelihood estimation. Methodologies for studying seismic
hazard. Case studies in Eastern Mediterranean region.
(İleri Arama Jeofiziği) Advanced treatments of recent topics of interest in exploration geophysics, with emphasis on refraction and reflection prospecting. Principles of refraction and refraction seismology. Experience in computer processing of
seismic data.
(Jeofizikte Özel Konular I-IV) Recent developments in geophysics are main contents of this lecture.
Contents of this lecture vary each year.
(Doktora Tezi) Original research on the theoretical and/or applicational aspects of a special topic related with the student’s major area of specialization in
geophysics. Preparation and defence of Ph.D. dissertation.
GPH530 - EM Methods pdf Yard.Doç. Bülent Tank
GPH540 - Wave Propagation I pdf
Doç.Dr. Hayrullah Karabulut
GPH542 – Physics of Earthquake Source I pdf
Prof.Dr. Mustafa Aktar
GPH642 – Global Seismology pdf
Prof.Dr. Mustafa Aktar
|
||||||||
Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma
Enstitüsü
Jeofizik Ana Bilim
Dalı | © 2010 |